Edutainment: Introducing a New Hungarian Approach in Preforming Reading Skills

Antal Mór Szűcs
(Eotvos Lorand University, Budapest, Hungary)

Received: 11.12.2018; Accepted: 31.01.2019; Published: 26.10.2020

Abstract: This article presents the results of a pilot study about the effect of a new Hungarian motivation based method for preforming reading. The program ‘Mesezene’ provides a one-year-long development for children in the last year of kindergarten on phonological awareness at the same time it helps to preform the mental representations and associations required for reading.

Keywords: phonologic awareness, preforming reading skills, kindergarten, motivation based teaching

Introduction to the ‘Mesezene’ method

Reading as the single most important cultural tool plays an important role in children’s school career. Their success depends on their reading skills. Most of the upcoming subjects are based on written material (history, literature, biology). Therefore it is essential to provide our children with the best possible methods and opportunities to learn to read and to develop their reading skills. The ‘Mesezene’ (translation could be: Music Tales) method provides an efficient but entertaining, joyful and fun preparation for learning reading during the last year of kindergarten (Sándor, 2016).

The method utilizes tales and a special applied form of music as a motivational system. It invites children into a magical world of tales where letters are impersonated by loveable balloons and exciting fairy tale characters. The stories are accompanied by musical sound effects called ‘musicmurmur’. Musicmurmur is a collection of sound effects created by simple musical instruments, which are born into the context of the tale and create emotional elevation (Ványi et al., 2014).
The 4 key points of the method

1. **Phoneme isolation.** The method provides the opportunity for 6 year-old children to shape the mental representation of isolated phonemes, which is crucial in order to associate them to visual objects (graphemes).

2. **Separating vowels from consonants.** The vowels symbolized by ‘faced’ balloons – each of them have their own unique color and emotion. The consonants are represented by fairytale figures. The two groups are effortlessly separable thus by the children, they ‘unconsciously’ learn to categorize the phonemes to vowels and consonants.

3. **Phoneme-grapheme association.** Week by week during active play in a fantasy world they evolve association between one phoneme and a figure (balloon or character) as a preformation of the actual grapheme-phoneme correspondence. Meanwhile - motivated by their curiosity and excitement about the stories with the balloons and the tale characters - they learn phoneme-grapheme correspondence.

4. **Preparation for reading syllables.** Within the framework of active gaming and the fantasy world, children can be taught for one of the most difficult mental operations of the reading process: reading syllables. They decode visual objects (balloons and figures) as graphemes, which is the preformation for reading real syllables. The cognitive process is equivalent in reading syllables (consisting letters).

Hungarian orthography

Currently, the ‘Mesezene’ method is optimized for the orthography of the Hungarian language, but it can be adapted successfully to any language, which operates with shallow orthography and agglutination. *Examination of grapheme-phoneme correspondence, reading syllables, identification of phonemes and verbal fluency is in the first grade.*

Hypothesis

The study tries to map the effects of the Mesezene method on the grapheme-phoneme correspondence, on reading syllables, on the perception of phonemes and on verbal fluency in the first grade of elementary school. We have the following hypothesis:

I. The method helps to link the phonemes to graphemes. We can measure this at the beginning of the learning to read procedure and reveal it in the speed of reading as well as in the errors made during reading.

II. I suppose that the method has an effect on the efficiency of reading syllables therefore children supported by the method will read two-letter-long syllables faster and producing less mistakes.

III. As the method separates the phonemes from the speech flow we can assume that the focus group identifies phonemes in words.

IV. I also assume difference in verbal fluency of the two groups. I presume the focus group will have access to more lexemes within the given time (30 seconds) than the control group.
Participants

Although the Mesezene program develops the reading abilities during the last year of kindergarten we have measured the effect in elementary school. If we aim to preform reading technique results must be examined in elementary school where the actual learning to read process starts. Therefore two groups have been measured. The focus group (n=19) was trained with the Mesezene method right before the start of the first grade in elementary school. The control group (n=20) was an age-matched selection of children who had not been given any development on their metalingual skills prior. All of them have been between ages of six and seven – similar age distribution. Both groups attended the same elementary school and been taught to read with the same method. The examination was executed in September 2015 in two sessions. The first one was timed right after learning the first letters, while the second one was after the first reading lesson aiming the ability to read syllables.

Method

Tests were carried out to examine reading skills. We measured how efficiently they can read grapheme and syllables. Therefore we measured the time required and noted if a letter was pronounced incorrectly. We also had tasks to measure related lingual skills such as the phoneme identification and verbal fluency.

I. Grapheme-phoneme correspondence. Children read 1. vowels, 2. consonants, 3. mixed (vowels and consonants). In every subtest we measured the time needed while noted the answers’ correctness, as well.

II. Reading syllables. Only two letter-long combinations were in the task. We measured the required time and noted the answers’ correctness again.

III. Acoustic identification of phonemes. Children had to decide if a certain phoneme is present in a set of given words or not.

IV. Verbal fluency. Children had to collect words with certain phonemes (a, i, ó and m, s, t, v) within 30 seconds. This shows the ability how easily accessible the mental lexicon is.
Phoneme - grapheme correspondence and reading syllables

Children in the focus group read vowels 2.3 times, consonants 2 times, and syllables 2.6 times faster than the control group. The difference between the two groups in the task reading letters is significant (p=0.0005). In reading syllables the difference was significant, too (p=0.0002). The focus group reads faster with significantly less mistakes. The control group had the average of 2-3 mistakes (A=2.68) while the focus group performed almost flawlessly (A=0.21). The focus group read syllables making significantly less mistakes too (A=0.57) than the control group (A=3.45).

The standard deviation also shows us information about the performance of the two groups. The focus group had a much smaller deviation than the control group in the time needed to read the letters (σFG: 15.14, σCG:36.07). The focus group produced more consistent results in reading syllables, too (σFG: 25.26; σCG: 36.67). The focus group performed more consistent according to the time required for reading syllables (σFG: 25.26; σCG: 36.67). The focus group was more consistent in correctness, too, than the control group in reading graphemes (FG: σ=0.53; CG: σ3.16), as well as in decoding syllables (FG: σ=1.12; CG: σ=3.68). We can conclude that the focus group produced more consistent in every measured aspect.

Identification of phonemes

Both groups had outstanding results reaching close to maximum level. (FG average: 20.26; CG average: 17.85). This suggests that children reaching the age of 7 easily identify phonemes acoustically. In this task the standard deviation of the results is almost two times greater in the control group (σFG: 1.59; σCG: 3.24). This suggests that the method might have a positive effect on the focus group’s performance.

Verbal fluency

In average the focus group activated 10-11 words while the control group pronounced 5-6 words on average with vowels. The difference seems significant (p=0.001). We had similar results examining the consonants the focus group had 11 while the control group 6 lexemes in average (p=0.001).

Conclusion

According to above data we can conclude that the children developed with ‘Mesezene’ method can decode graphemes and syllables more efficiently within a shorter period of time and they can produce significantly better results according to correctness. Moreover as the focus group performed more consistently - resulting smaller deviation - we can assume that the method also helps the children to gain similar lingual abilities.
Our results show a significant difference in verbal fluency, too. We can conclude that this one-year-long method might have significant effect on word activation.

The data on phoneme identification did not show statistically significant differences in performance. Although the numbers of standard deviation suggest that the method do have an effect on the whole group's ability to percept and identify phonemes better.

According to this four-level examination we can deduce that the ‘Mesezene’ method applied in the last year of kindergarten has an effect on reading abilities learned later in elementary school. The effect must reach children's metalingual skills to be more exact: it affects their phonological awareness. The skill of reading is based on the underlying metalingual aspects that makes the words inner structure accessible for children. This conclusion suggests that further studies shall be conducted in order to have a deeper and more precise understanding.

References